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We propose a spin model with a new kind of ferromagnetic interaction, which may be calledferromagnetic
coupling with threshold. In this model the contribution of a given spin to the total energy has only two possible
values and depends on the number of parallel spins among its nearest and next to nearest neighbors. By
mapping the model onto the Ising version of the isotropic eight-vertex model, we obtain some evidence of a
low temperature phase made of alternate parallel plus and minus polymers, in which the spin is aligned with
the majority of its neighbors.@S1063-651X~96!00808-2#

PACS number~s!: 05.50.1q, 64.60.2i

I. INTRODUCTION

Ising-like spin systems are much studied statistical mod-
els which have a surprising richness of critical behavior~see,
e.g. @1#!. The axial next nearest neighbor Ising~ANNNI !
model is the simplest model which describes modulated
structures; experimental evidence for such phases is provided
by binary alloys~see, e.g.,@2# and @3#!. Modulated ordering
in the ANNNI model is the effect of the competition between
ferromagnetic couplings~between nearest neighbor spins!
and antiferromagnetic couplings~between second-neighbor
spins along one lattice direction!. This competition leads to a
series of commensurate and incommensurate modulated
phases of arbitrarily long wavelength~see, e.g.,@4#!.

In this paper we show that a system where the spins tend
to be aligned to the majority of their neighbors has a low
temperature striped phase; this phenomenon is not pointed
out by the ANNNI model and might lend some insight into
the problem of the formation of stripelike patterns.

The model we propose here is an Ising model where the
contribution of a given spin to the Hamiltonian is2b if the
spin is aligned to the majority of its neighbors and1b if it is
not. In the following we give the definition of the model that
we are going to discuss. Let us consider the infinite bidimen-
sional square latticeL5Z2 and define aZ2 spin variable
siP$21,11% on each site iPL. We denote by
sPV5$21,11%L a configuration of the system and define
the formal Hamiltonian

H~s!52b (
iPL

sif i~s!, ~1!

whereb is a positive real number and

f i~s!5sgnH (
j51

9

si , j J ; iPL, ~2!

where we have denoted bysi , j , j51, . . . ,9, thenine spins in
the 333 square blockBi centered on the sitei . All the

equilibrium properties of the model can be obtained from the
partition functionZL(b)5(sPVexp@2H(s)#.

If b.0 model~1! is characterized by a sort of ferromag-
netic coupling among the spin variables. We remark that
model ~1! is ferromagnetic in a different fashion from the
Ising modelHI52b(^ i , j &sisj ~where the sum runs over the
pairs of nearest neighbor sites inL); we call this kind of
coupling ferromagnetic coupling with threshold.

Indeed, let us supposesi511: in the Ising model the
contribution of the spinsi to the total energy of the system
decreases when the number of nearest neighbor plus spins
increases; hence by increasing the number of plus spins
amongsi nearest neighbors we get more and more energeti-
cally preferable situations. In our model the contribution of
the spinsi to the total energy has only two possible values:
1b if the number of plus spins inBi is less than 5 and
2b if it is greater than or equal to 5; hence, from the point
of view of the spinsi , the best situation is reached when four
of the eight spins inBi \$ i % are equal to11 and there is no
further energetic gain if the number of plus spins inBi \$ i %
increases up to 8.

As will be explained below, due to the freedom in the
choice of number and location of the plus~minus! spins
around a fixed plus~minus! one, our model shows a very
peculiar behavior at low temperatures. In the following we
give some evidence of a critical phase transition to a low
temperature phase, which is a sort of ‘‘polymer phase’’ made
of alternate stripes with fluctuating boundaries.

The occurrence of a striped phase does not depend on the
geometry of the blocksBi , which appear in the definition of
model ~1!. We find a striped phase also for the model

H̃~s!52b (
iPL

sif̃ i~s! ;sPV, ~3!

whereb is the inverse temperature and

f̃ i~s!5sgnH (
j51

5

si , j J ; iPL, ~4!

where we have denoted bysi , j , j51, . . . ,5, the fivespins in
the ‘‘cross’’ blockCi containing the sitei and its four near-
est neighbors.
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The Hamiltonian ~1! is not strictly ferromagnetic; we
mean that it does not satisfy the conditions under which Grif-
fiths inequalities hold@5#. Indeed, by expandingH as a linear
combination of products of the spin variables it can be
shown that in model~1! the couplings between nearest and
next to nearest neighbor spins are ferromagnetic, but antifer-
romagnetic terms are present as well; in the case of model
~3! the coupling between nearest neighbors is ferromagnetic,
while the coupling between next to nearest neighbors is an-
tiferromagnetic. In both the models a competition between
ferromagnetic and antiferromagnetic couplings occurs; this is
similar to what happens in the case of the ANNNI model.

Due to this competition it is not surprising to find striped
phases in our model. We remark that this competition is
essentially an ‘‘entropic’’ effect. The spinsi prefers to have
just four parallel spins inBi \$ i %: this is energetically equiva-
lent to the situation with eight parallel spins inBi \$ i %, but
the former can be realized in many different ways, while the
latter just in one way. The phase transition has been studied
by a renormalization group transformation known as ‘‘ma-
jority rule’’ ~see, e.g.,@6,7#!; this is suggested by the struc-
ture of Hamiltonian~1!.

Model ~1! has also an interesting interpretation as a
‘‘model of atoms’’; indeed, it can be seen as a model of a
binary alloy, namely, a mixture of two species of atoms~say
A andB), such as the Ising model~see, e.g.,@8#!. But in the
present case the configurations which are energetically pre-
ferred are those in which anA (B) atom has at least four
A (B) atoms among its nearest and next to nearest neighbors,
no matter if the number of such atoms is greater than 4. Due
to this fact the ordered phase is an alternate sequence of
stripes ofA andB atoms.

The transformation~2! is widely used for the recovering
of noisy images and it is known as themedian filter~see,
e.g.,@9#!. It follows that the Hamiltonian~1! provides a sto-
chastic version of the median filter.

Finally, we observe that in our model each spin is coupled
to a Boolean function of its neighbor spins; this fact re-
sembles the dynamical rules in therandom networks of au-
tomata, where each spin is updated according to a random
Boolean function of its neighbors~finite dimensional case! or
to a random Boolean function of a certain numberk of ran-
dom spins of the whole network~mean field case; see@10#!.

The paper is organized as follows: in the next section the
expansion of Hamiltonians~1! and ~3! in terms of products
of spin variables is performed. In Sec. III the phase transition
is studied by mapping the model onto the Ising version of the
isotropic eight-vertex model. Section IV summarizes the
conclusions.

II. SOME PROPERTIES OF THE HAMILTONIAN

In this section we discuss some properties of model~1!; in
particular, we describe its ground states, we give a rough
evaluation of its residual entropy, and we expand its Hamil-
tonian as sums of products of the spin variables.

Model ~1! has an infinite number of ground states, which
are the configurations satisfying the constraint

si5f i~s! ; iPL; ~5!

such configurations are calledmedian roots, that is, configu-
rations invariant under the median filtering.

A complete characterization of bidimensional median
roots is still missing. We refer to@9# for a related discussion
and describe them heuristically: a median root is made of
two typical kinds of structures, namely, clusterlike structures
and polymerlike structures. In Fig. 1~a! we show the smallest
cluster which is a root, a 12-spin cluster calledminroot,
while in Fig. 1~b! a typical polymer structure is depicted.

It follows that the model has a residual entropy; we obtain
a rough estimate of it by considering the model defined on a
cylinder of 63N sites withN→`. On a 63N strip ~with
periodic boundary conditions in the six-site direction! we can
classify the median roots by the configurations in the last two
columns. Taking into account the symmetries of the problem
~parity s→2s and invariance under rotations of the cylin-
der! leads to 30 nonequivalent classes. A 30330 transfer
matrix Ta,b can be defined as the number ofa roots on the
63(N11) cylinder obtained by anyb root on the 63N
cylinder by adding a column.

The largest eigenvalue of the transfer matrix provides the
residual entropy. We do not report the details here, but
only quote the results. The largest eigenvalue is found
to be l053.574 77 and the residual entropy per site
1/6 lnl050.212 32. To our knowledge there is not any esti-
mate in the literature for the entropy of the median roots to
compare with ours.

In order to expand Hamiltonian~1! as a linear combina-
tion of products of the spin variables we recall that iff (s) is
a function of theZ2 spin variablessi where i ranges over
some finite setV, then f (s) may be written in a unique way
as

f ~s!5(
X

c~X!s~X!, ~6!

where s(X)5) iPXsi , the sum runs over all the subsets
X,V, and the numbersc(X) are given by

c~X!5
1

2uVu (
sP$21,11%V

s~X! f ~s!, ~7!

FIG. 1. ~a! The smallest cluster invariant to the transformation
~2!: black squares represent plus spins on a minus background or,
vice versa, minus spins on a plus background.~b! A portion of a
polymer. The polymer is supposed to be infinitely long; it satisfies
the constraint~5!, as well.
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whereuVu is the cardinality ofV, that is, the number of sites
in V.

Now, we observe thatH can be written as follows:

H~s!52b (
iPL

f i~s!, ~8!

where the functionf i(s)5sif i(s) is defined on the finite sets
Bi ; iPL. Hence, the functionf i(s) can be expanded as in
Eq. ~6!: one has to calculate 29215511 coefficients~that is,
one has to consider all the possible subsets ofBi except for
the empty set!. This number could be reduced by taking
properly into account the symmetries of the Hamiltonian.

We have performed a computer assisted calculation of all
the coefficients and, by working out the sums in Eq.~8!, we
have obtained

H~s!52
b

29(i51

15

g i (
zPG i

s~z!, ~9!

where the familiesG i of subsets ofBi and the related coef-
ficients g i are given in Table I. We remark that eachG i
represents a family of a certain kind of sets of sites ofL
contained in a 333 blockB; for example,G1 is the family
of all the pairs of nearest neighbor sites andG6 is the family
of all the plaquettes.

This calculation shows that model~1! is not ferromagnetic
~see Table I! in the sense that it does not fulfill the hypoth-
esis under which Griffiths inequalities hold. This model is

characterized by ferromagnetic and antiferromagnetic cou-
plings: we observe that the two-spin interactions are ferro-
magnetic if two adjacent columns or rows are involved
~nearest and next to nearest spin couplings!, while they are
antiferromagnetic if the involved columns or rows are at a
distance of two lattice spacings. As in the case of the ANNNI
model, one may expect that the result of this competition
could be a low temperature striped phase.

By performing the same calculation in the case of model
~3! we have obtained

H̃~s!52
b

25 F24(^ i , j & sisj28 (
^^ i , j &&

sisj24 (
^^^ i , j &&&

sisj

24 (
Ti , j ,k,l

sisjsksl112 (
L i , j ,k,l

sisjsksl G , ~10!

where the five sums run, respectively, over the pairs of near-
est neighbors, the pairs of next to nearest neighbors, the pairs
of second neighbors along the lattice directions, the four-site
cluster containing a sitei and three of its four nearest neigh-
bors ~T-shaped clusters!, and the square four-site clusters
with sides at 45° with respect to the lattice directions. Even
model~3! exhibits a competition between ferromagnetic and
antiferromagnetic couplings; hence we expect a low tem-
perature striped phase in this case, as well.

III. THE PHASE TRANSITION

The structure of Hamiltonian~1! suggests the introduction
of a new set of dynamical variables in order to investigate
the phase diagram of our model.

Suppose we partitionL into 333 squared blocksBa
wherea is the site that is in the center ofBa ; the collection
of all these sitesa is denoted byL8. On each of these sites
a we define the new variable

sa85fa ;aPL8; ~11!

we have defined the new variables by ‘‘integrating’’ over the
fluctuations of the old ones on square 333 blocks: we ex-
pect that the details of the configurations of the system on the
scale of three lattice spacings are inessential to describe the
peculiarities of the ordered phase.

We have, then, introduced a new model defined on the
lattice L8, with space of configurationsV85$21,11%L8;
the equilibrium~unnormalized! measure of this new model is
given by

m8~s8!5 (
sPV

Z~s8,s!e2H~s!, ~12!

where the probability kernelZ(s8,s)5)aPL8dsa8 ,fa(s)
has

been introduced. The formal Hamiltonian of the new model
is

H8~s8!52 lnm8~s8!1const ;s8PV8. ~13!

In order to work out the sum in Eq.~12! we use the
method of the cumulant expansion~see@11#!, writing Hamil-
tonian ~1! in the form H(s)5H0(s)1V(s);sPV, where
H0(s)52b(aPL8safa(s) contains the interactions be-

TABLE I. The coefficientsg i , introduced in Eq.~8!, are listed.
In the third column the familiesG i , to which each coefficientg i is
related, are briefly described. In the fourth column a typical setz
PG i is depicted: the grid represents the 333 blockB in which z is
contained; the sites ofB belonging toz are represented by the black
circles. We remark that just an example of set belonging toG i is
depicted in the fourth column; for example, in the casei510 one
can consider the following sets, as well:
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tween spins within the same blockBa;aPL8, while
V(s)52b( iPL\L8sif i(s) contains the interactions between
spins belonging to different blocks. By truncating the cumu-
lant expansion at the first order, one can show that the new
Hamiltonian is in the form

2H8~s8!5const1J^ & (
^ag&

sa8sg81J^^ && (
^^ag&&

sa8sg8

1Jh (
a
g

hh
d
sa8sg8sd8sh8 , ~14!

where the three sums run, respectively, over all the pairs of
nearest neighbors and next to nearest neighbors and over all
the plaquettes inL8; we remark that the new model is the
Ising version of the isotropic eight-vertex model@1#. With a
computer assisted calculation we have obtained the new cou-
plings J^ & ,J^^ && , andJh as functions of the original cou-
pling b ~see Fig. 2!; their structure isJa(b)5bFa(e

2b),
whereFa are rational functions.

The variables transformation~11! and the calculation of
the Hamiltonian of the new model amount to performing the
‘‘majority rule’’ renormalization group transformation~see
@6,7#!. We remark that forb large enough, with a single step
of renormalization, model~1! is mapped into the eight-vertex
model ~14! with ‘‘negative’’ nearest and next to nearest
neighbor couplings; that is, starting from a model which is in
some sense ferromagnetic, we obtain a model with antiferro-
magnetic couplings.

The phase diagram of the eight-vertex model is well
known ~see, e.g.,@1,7,12#!: at J^^ &&,0 anduJ^ &u,2 uJ^^ &&u
this phase diagram is characterized by a critical surface sepa-
rating the paramagnetic and the superantiferromagnetic
~SAF! phases; respectively, the high and the low temperature

phases. We observe that asb increases from zero to infinity
the renormalized eight-vertex model~14! undergoes a
second-order phase transition from the paramagnetic to the
SAF phase.

Hence, there exists a valuebc such that atb5bc our
original model is ‘‘critical’’; the high temperature phase is
the usual paramagnetic phase: what about the low tempera-
ture one? In terms of the new variablessa8 with aPL8 this
phase can be characterized by a staggered magnetization
m8 defined as the difference between the magnetization on
even and odd columns:m850 in the paramagnetic phase,
m8Þ0 in the SAF phase. But a column of the new model
corresponds to a strip of length three lattice spacings in
model ~1!; then, at low temperature, model~1! exhibits an
ordered phase made of an alternate sequence of parallel plus
and minus polymers, infinitely long and three lattice spacings
wide ~see Fig. 3!. This suggests that the median roots are
entropically dominated by polymer–like structures develop-
ing parallel to one of the lattice directions.

We have studied model~3! following the scheme used for
model~1!; we have partitioned the latticeL as in Fig. 4. The
Hamiltonian associated with the block variables is

2H̃8~s8!5const1 J̃^ & (
^ag&

sa8sg81 J̃^^ && (
^^ag&&

sa8sg8

~15!

with J̃^ & and J̃^^ && depending onb as in Fig. 5.
Even for model~3! the renormalized model exhibits a low

temperature SAF phase. Due to the geometry of the cross
blocks, in this case the polymers of the low temperature
phase are parallel to the dashed lines depicted in Fig. 4.

IV. CONCLUSIONS

We have proposed an Ising-like spin model with a new
kind of coupling in order to point out that a simple request,
such as the tendency of each spin to be aligned to the ma-

FIG. 2. Renormalized couplings as functions ofb in the case of
model ~1!. Solid, dashed, and dotted lines represent, respectively,
J^ & , J^^ && , andJh.

FIG. 3. The typical low temperature pattern for our model. The
average distance between polymers of the same sign is six lattice
spacings. The constraint~5! is almost satisfied.
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jority of its neighbors, leads to low temperature striped
phases.

The expansion of the Hamiltonian in terms of products of
spin variables pointed out the similarities between our model
and the ANNNI model; this suggests the hypothesis that the
model undergoes a phase transition to a striped phase.

We studied the model by renormalization group methods
and at the level of approximation we have considered, first
order of cumulant expansion, the phase transition is ob-
served.

The parallel polymerization appears to be characteristic of
a ferromagnetic coupling with threshold. In the spirit of the
‘‘atomic’’ interpretation, this implies that the clusters ofA
atoms, as well asB atoms, become one-dimensional at low
temperature, i.e., they lose one dimension.

Our estimations of critical couplings arebc;25 for
model~1! andbc;5 for model~3!. The cumulant expansion
is known to be relevant near the critical point. A low tem-
perature series expansion would better describe the model in
the limit b→`; this is not a trivial task, since a rigorous
analysis of the statistical properties of the ground states is
needed. This will be the topic of further work.
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FIG. 4. The partition of the lattice used to study model~3!. The
renormalized variables are defined on the blank circles, which form
the new lattice.

FIG. 5. Renormalized couplings as functions ofb in the case
of model ~3!. Solid and dashed lines represent, respectively,J̃^ &

and J̃^^ && .
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