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Polymerization in a ferromagnetic spin model with threshold

Emilio N. M. Cirillo™ and Sebastiano Stramaglia
Dipartimento di Fisica dell'Universitadi Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari,
via Amendola 173, 70126 Bari, Italy
(Received 13 December 1995; revised manuscript received 7 February 1996

We propose a spin model with a new kind of ferromagnetic interaction, which may be fealiethagnetic
coupling with thresholdin this model the contribution of a given spin to the total energy has only two possible
values and depends on the number of parallel spins among its nearest and next to nearest neighbors. By
mapping the model onto the Ising version of the isotropic eight-vertex model, we obtain some evidence of a
low temperature phase made of alternate parallel plus and minus polymers, in which the spin is aligned with
the majority of its neighbor4.51063-651X96)00808-2

PACS numbdrs): 05.50+q, 64.60—i

I. INTRODUCTION equilibrium properties of the model can be obtained from the
partition functionZ, (B) =2 qexd —H(s)].

Ising-like spin systems are much studied statistical mod- If 8>0 model(1) is characterized by a sort of ferromag-
els which have a surprising richness of critical behay#ee, netic coupling among the spin variables. We remark that
e.g. [1]). The axial next nearest neighbor ISitgNNNI) model (1) is ferromagnetic in a different fashion from the
model is the simplest model which describes modulatedsing modelH, = — 83 ;;s;s; (where the sum runs over the
structures; experimental evidence for such phases is provideghirs of nearest neighbor sites in); we call this kind of
by binary alloys(see, e.g.[2] and[3]). Modulated ordering couplingferromagnetic coupling with threshald
in the ANNNI model is the effect of the competition between Indeed, let us supposg=+1: in the Ising model the
ferromagnetic couplinggbetween nearest neighbor spins contribution of the spirs; to the total energy of the system
and antiferromagnetic couplingbetween second-neighbor decreases when the number of nearest neighbor plus spins
spins along one lattice directinrirhis competition leads to a increases; hence by increasing the number of plus spins
series of commensurate and incommensurate modulateginongs; nearest neighbors we get more and more energeti-
phases of arbitrarily long wavelengtkee, e.g.[4]). cally preferable situations. In our model the contribution of

In this paper we show that a system where the spins tenthe spins; to the total energy has only two possible values:
to be aligned to the majority of their neighbors has a low+ g if the number of plus spins iB; is less than 5 and
temperature striped phase; this phenomenon is not pointed g if it is greater than or equal to 5; hence, from the point
out by the ANNNI model and might lend some insight into of view of the spirs;, the best situation is reached when four
the problem of the formation of stripelike patterns. of the eight spins irB;\{i} are equal to+ 1 and there is no

The model we propose here is an Ising model where theurther energetic gain if the number of plus spinsBp{i}
contribution of a given spin to the Hamiltonian4sg if the  increases up to 8.
spin is aligned to the majority of its neighbors ahe if it is As will be explained below, due to the freedom in the
not. In the following we give the definition of the model that choice of number and location of the plésiinus spins
we are going to discuss. Let us consider the infinite bidimenaround a fixed plugminus one, our model shows a very
sional square lattice\ =22 and define aZ, spin variable peculiar behavior at low temperatures. In the following we
sie{—1,+1} on each siteieA. We denote by give some evidence of a critical phase transition to a low
se Q={-1,+1}" a configuration of the system and define temperature phase, which is a sort of “polymer phase” made

the formal Hamiltonian of alternate stripes with fluctuating boundaries.
The occurrence of a striped phase does not depend on the
H(s)= _’32 s bi(S), (1) geometry of the_ bIockBi_, which appear in the definition of
ieA model(1). We find a striped phase also for the model
where g is a positive real number and ~ ~
Hs)=-B2 sid(s) VseQ, 3)
9 €
¢>i(s)=sgn{;l Sivl} VicA, 2) where g is the inverse temperature and
5
where we have denoted lsy;,j=1, ... ,9, thenine spins in ~ .
the 3xX3 square blockB; centered on the site. All the ¢i(s) =59 121 Sijf  VieA, @
where we have denoted Isy;,j=1, ... ,5, the fivespins in
* Electronic address: cirillo@axpba0.ba.infn.it, the “cross” block C; containing the sité and its four near-
stramaglia@axpba5.ba.infn.it est neighbors.
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The Hamiltonian(1) is not strictly ferromagnetic; we
mean that it does not satisfy the conditions under which Grif-
fiths inequalities holdi5]. Indeed, by expanding as a linear
combination of products of the spin variables it can be
shown that in mode{l) the couplings between nearest and
next to nearest neighbor spins are ferromagnetic, but antifer-
romagnetic terms are present as well; in the case of model
(3) the coupling between nearest neighbors is ferromagnetic,
while the coupling between next to nearest neighbors is an-
tiferromagnetic. In both the models a competition between
ferromagnetic and antiferromagnetic couplings occurs; this is (a)
similar to what happens in the case of the ANNNI model.

Due to this competition it is not surprising to find striped

‘\
o

FIG. 1. () The smallest cluster invariant to the transformation

phases_ n our“modeI: YVe remark tha-t this competition IS(2): black squares represent plus spins on a minus background or,
essentially an “entropic” effect. The spig) prefers to have ;.o versa, minus spins on a plus backgroufinl.A portion of a

just four parallel spins i;\{i}: this is energetically equiva- ol mer. The polymer is supposed to be infinitely long; it satisfies
lent to the situation with eight parallel spins B\{i}, but  the constraint5), as well.
the former can be realized in many different ways, while the

latter just in one way. The phase transition has been studied,, ., configurations are callededian rootsthat is, configu-
by a renormalization group transformation known as “Ma-.ations invariant under the median filtering

jority rule” (see, e.9.[6,7]); this is suggested by the struc- A" complete characterization of bidimensional median

ture of Hamiltonian(1). roots is still missing. We refer tf9] for a related discussion

“ Model (1) has” also an interesting interpretation as a;n4 gescribe them heuristically: a median root is made of
model of atoms”; indeed, it can be seen as a model of

%wo typical kinds of structures, namely, clusterlike structures
binary alloy, namely, a mixture of two species of atofsay yp y

. , and polymerlike structures. In Fig(a&) we show the smallest
A andB), such as the Ising modesee, e.g[8]). Butinthe o srar Which is a root, a 12-spin cluster callednroot
present case the configurations which are energetically Preuhile in Fig. 1(b) a typical polymer structure is depicted.

ferred are those in which ah (B) atom has at least four ;510w that the model has a residual entropy: we obtain
A (B) atoms among its nearest and next to nearest neighborg, ., estimate of it by considering the model defined on a
no matter if the number of such atoms is greater than 4. Dug, jinder of 6xN sites withN—. On a 6xXN strip (with

to this fact the ordered phase is an alternate sequence ghyiqdic houndary conditions in the six-site directiove can
stripes ofA andB atoms. classify the median roots by the configurations in the last two

Th_e trgnsformatior(_Z) _is widely used for _the recovering columns. Taking into account the symmetries of the problem
of noisy images and it is known as tmeedian filter(see, (arity s—. —s and invariance under rotations of the cylin-
e.g.,[9]). It follows that the Hamiltoniari) provides & sto-  yop |eads to 30 nonequivalent classes. AX&D transfer
chastic version of the median filter. atrix T, ,, can be defined as the numberafoots on the

Finally, we observe that in our model each spin is couple X (N+1) cylinder obtained by an root on the 6<N
to a Boolean function of its neighbor spins; this fact re—Cylinder by adding a column.

sembles the dynamical rules in thendom networks of au- The largest eigenvalue of the transfer matrix provides the

tomata where_ each_spin_is updz_at_ed a_ccordi_ng to a randorTr]esidual entropy. We do not report the details here, but
Boolean function of its nelghbo(ﬁmte dlm'ensmnal cager only quote the results. The largest eigenvalue is found
to a random Boolean function of a certain numkenf ran- , ""p No=3.57477 and the residual entropy per site

dom spins of the whole networknean field casesee[10)). = g IM\y=0.212 32. To our knowledge there is not any esti-

The Paper 1s orgam;ed as fOHOWS.: in the next section th?nate in the literature for the entropy of the median roots to
expansion of Hamiltonianél) and (3) in terms of products compare with ours

of spin variables is performed. In Sec. lll the phase transition In order to expand Hamiltoniafl) as a linear combina-

is studied by mapping the model onto the Ising version of th‘?ion of products of the spin variables we recall that(i§) is

isotropic eight-vertex model. Section IV summarizes thea function of theZ, spin variabless, wherei ranges over

conclusions. some finite seV, thenf(s) may be written in a unique way
as
Il. SOME PROPERTIES OF THE HAMILTONIAN
In this section we discuss some properties of métlelin f(s)= ; c(X)s(X), (6)

particular, we describe its ground states, we give a rough

evaluation of its residual entropy, and we expand its Hamil-

tonian as sums of products of the spin variables. where s(X) =1II;.xs;, the sum runs over all the subsets
Model (1) has an infinite number of ground states, whichXCV, and the numbers(X) are given by

are the configurations satisfying the constraint

1
cX)=gm 2 s(X)f(s), @

se{—-1,+1}

Si:¢i(s) VieA; (5)
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TABLE I. The coefficientsy;, introduced in Eq(8), are listed.
In the third column the familie§; , to which each coefficieny; is
related, are briefly described. In the fourth column a typicaliset
eI'; is depicted: the grid represents th& 3 blockB in which ¢ is
contained; the sites @& belonging tof are represented by the black
circles. We remark that just an example of set belongindf';tds
depicted in the fourth column; for example, in the casel0 one
can consider the following sets, as well:

aafan

characterized by ferromagnetic and antiferromagnetic cou-
plings: we observe that the two-spin interactions are ferro-
magnetic if two adjacent columns or rows are involved
(nearest and next to nearest spin couplinggile they are
antiferromagnetic if the involved columns or rows are at a
distance of two lattice spacings. As in the case of the ANNNI
model, one may expect that the result of this competition
could be a low temperature striped phase.

By performing the same calculation in the case of model
(3) we have obtained

~ B
H(S):_F 242 SiSj_8<2 SiSj_4 2 SiSj

B ¥ description of T'; typical cluster in T; e — et
1 | +200 | pairs of nearest neighbors sites H <I ’J> <I ) >> <<<I ] >>>
2 | 4240 | pairs of next to the nearest neighbors sites H
3 | -60 |pairs of second-neighbor sites along the lattice
directions H -4 > SiSjSks +12 > s SiSkSi |» (10
4 -40 | two-site clusters with sites at distance /5 lattice 53 ikl ikl
spacings
DB pairs clsecond ncighbor stes slong thelatice diagonals g where the five sums run, respectively, over the pairs of near-
- plaquettes . . . .
7 | -40 | four-site clusters containing the center of the block B E est nelghbors’ the pal rs Of next to neareSt nelghbors' the palrs
and occupying & 3 x 2 rectangular block of second neighbors along the lattice directions, the four-site
- four-site cl ini h f the block B .. . . .
P | meengiog the b g e conter of the bloc & cluster containing a siteand three of its four nearest neigh-
9 | +24 [ four-site clusters not containing the center of the block @ bors (T-shaped clusteys and the square four-site clusters
B and occupying a 3 x 2 rectangular block . h d t 450 th tt th | tt d t E
10 | +12 | four-site clusters not containing the center of the block Bﬂ with sides a o Wi respec o € lattice direc IOﬂS ven
B and occupying the whole B model(3) exhibits a competition between ferromagnetic and
e g e center of the block Brand & antiferromagnetic couplings; hence we expect a low tem-
12 | 24 | six-site clusters containing the center of the block B and e perature striped phase in this case, as well.
occupying a 3 x 2 rectangular block
13| -20 | six-site clusters not containing the center of the block %
B and, necessarily, occupying the whole block B IIl. THE PHASE TRANSITION
14 | -20 | eight-site clusters containing the center of the block B EE
15 +140 eéghtfslte clusters not containing the center of the block Ei The structure Of Haml|t0nla(‘ﬂ.) SuggeStS the Intl’OdUCtIOﬂ

of a new set of dynamical variables in order to investigate
the phase diagram of our model.

Suppose we partitiom\ into 3X3 squared blocks3,
whereq is the site that is in the center 8, ; the collection
of all these sitesr is denoted byA\’. On each of these sites
a we define the new variable

o= da

we have defined the new variables by “integrating” over the
fluctuations of the old ones on squar 3 blocks: we ex-
pect that the details of the configurations of the system on the
scale of three lattice spacings are inessential to describe the

where|V| is the cardinality ofV, that is, the number of sites
in V.
Now, we observe that can be written as follows:

H(s)=-p2 fi(s), 8) VacA': (11)
where the functiorf;(s) =s; ¢;(s) is defined on the finite sets
B; Vie A. Hence, the functiori;(s) can be expanded as in
Eq. (6): one has to calculate’2 1=511 coefficientsthat is,
one has to consider all the possible subsetB;afxcept for P
the empty sgt This number could be reduced by taking pe(\:lvgaﬁg\elz Otfhtgne ?I:?ri:jefcepga:eﬁew model defined on the
properly into account the symmetries of the Hamiltonian. , o ' , , . AL
We have performed a computer assisted calculation of afgttice A’, with space of configuration®’={—1,+1}";

the coefficients and, by working out the sums in E), we the equilibrium(unnormalizedl measure of this new model is

have obtained given by

15

H(s):‘%; 7 2 S0, (9)

(El—‘i

p'(s)= 2 Z(s',s)e MO, (12)
se()
where the probability kerneZ(s’,s):HaEA,(SS;,MS) has

been introduced. The formal Hamiltonian of the new model
is

where the familied”; of subsets oB; and the related coef-
ficients ; are given in Table I. We remark that eath
represents a family of a certain kind of sets of sitesAof
contained in a X3 block B; for example,I'; is the family
of all the pairs of nearest neighbor sites dnylis the family
of all the plaquettes. In order to work out the sum in Eq12) we use the
This calculation shows that modd)) is not ferromagnetic method of the cumulant expansiee[11]), writing Hamil-
(see Table)lin the sense that it does not fulfill the hypoth- tonian (1) in the form H(s)=Hy(s)+V(s)VseQ, where
esis under which Griffiths inequalities hold. This model isHy(S)=— B2 ,cA'SaP.(S) contains the interactions be-

H'(s")=—Inu'(s")+const Vs'eQ'. (13
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FIG. 3. The typical low temperature pattern for our model. The
average distance between polymers of the same sign is six lattice
spacings. The constraiff) is almost satisfied.

FIG. 2. Renormalized couplings as functions®in the case of
model (1). Solid, dashed, and dotted lines represent, respectivelyphases. We observe that Asncreases from zero to infinity
Iy, Iy andJn. the renormalized eight-vertex moddll4) undergoes a

second-order phase transition from the paramagnetic to the
tween spins within the same blocB,VaeA’, while  SAF phase.
V(S)=— B3 . S #i(S) contains the interactions between — Hence, there exists a valyé; such that at3= 3. our
spins belonging to different blocks. By truncating the cumu-original model is “critical”; the high temperature phase is
lant expansion at the first order, one can show that the ne#e usual paramagnetic phase: what about the low tempera-
Hamiltonian is in the form ture one? In terms of the new variablgswith ae A’ this
phase can be characterized by a staggered magnetization
m’ defined as the difference between the magnetization on
—H'(s")=constrJ  , > s,S,+J( ) 2SS, even and odd columnsn’=0 in the paramagnetic phase,
(an) (ar) m’#0 in the SAF phase. But a column of the new model
o corresponds to a strip of length three lattice spacings in
+Jo 25 S4SyS6Sy (149 model (1); then, at low temperature, modél) exhibits an
aH ordered phase made of an alternate sequence of parallel plus
and minus polymers, infinitely long and three lattice spacings
where the three sums run, respectively, over all the pairs ofiide (see Fig. 3 This suggests that the median roots are
nearest neighbors and next to nearest neighbors and over afhtropically dominated by polymer—like structures develop-
the plaquettes in\’; we remark that the new model is the ing parallel to one of the lattice directions.
Ising version of the isotropic eight-vertex modél. With a We have studied modé¢B) following the scheme used for
computer assisted calculation we have obtained the new cowodel(1); we have partitioned the lattick as in Fig. 4. The
plings J; y,J« y, andJg as functions of the original cou- Hamiltonian associated with the block variables is
pling B (see Fig. 2 their structure is),(B)=BF .(€?#),
whereF, are rational functions. ~, ~ e '

The variables transformatiofi1) and the calculation of —H'(s")=const-J, ><a27> SaSytJ( >><<azy>> SaSy
the Hamiltonian of the new model amount to performing the (15
“majority rule” renormalization group transformatiotsee - —~
[6,7]). We remark that fo large enough, with a single step With J y andJ,, ), depending org as in Fig. 5.
of renorma"zation, modeﬂl) is mapped into the eight-vertex Even for mode(S) the renormalized model exhibits a low
model (14) with “negative” nearest and next to nearest temperature SAF phase. Due to the geometry of the cross
neighbor couplings; that is, starting from a model which is inblocks, in this case the polymers of the low temperature
some sense ferromagnetic, we obtain a model with antiferraPhase are parallel to the dashed lines depicted in Fig. 4.
magnetic couplings.

The phase diagram of the eight-vertex model is well IV. CONCLUSIONS
known (see, e.9.[1,7,12)): atJ, <0 and|J; y|<2[J
this phase diagram is characterized by a critical surface sepa- We have proposed an Ising-like spin model with a new
rating the paramagnetic and the superantiferromagnetikind of coupling in order to point out that a simple request,
(SAF) phases; respectively, the high and the low temperatursuch as the tendency of each spin to be aligned to the ma-
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FIG. 4. The patrtition of the lattice used to study mot®| The
renormalized variables are defined on the blank circles, which form  F|G. 5. Renormalized couplings as functions ®fin the case

the new lattice. of model (3). Solid and dashed lines represent, respectivaly,
andJ<< NE

jority of its neighbors, leads to low temperature striped

phases. Our estimations of critical couplings arg8.~25 for

.The e_xpansion of the Hamiltpn!an.i.n terms of products Ofmodel(l) andB.~5 for model(3). The cumulant expansion
spin variables pointed out the similarities between our models known to be relevant near the critical point. A low tem-
and the ANNNI model; this suggests the hypothesis that thgerature series expansion would better describe the model in
model undergoes a phase fransition to a striped phase.  the |imit 8—; this is not a trivial task, since a rigorous

We studied the model by renormalization group methodsynaysis of the statistical properties of the ground states is
and at the level of approximation we have considered, firsheeded. This will be the topic of further work.
order of cumulant expansion, the phase transition is ob-

served.

The parallel_ polyme_rlzatu_)n appears to be chara_c'gerlstlc of ACKNOWLEDGMENTS
a ferromagnetic coupling with threshold. In the spirit of the
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